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Abstract

Most particle accelerators routinely employ some type of stripline pickups and/or
kickers. In this paper, characteristic impedance and resistance per unit length are calcu-
lated for a strip transmission line geometry consisting of a circular outer conductor and
an infinitely thin concentric inner conductor which subtends an angle ¢¢ in azimuth (see
Figure 1). Useful design plots for these parameters as functions of ¢y and inner to outer
conductor radius ratio, b/a, are given.

Introduction

In many particle accelerators, pickups and kickers such as those found in beam position
monitors, beam current monitors and stochastic cooling systems employ stripline electrodes
which interact electromagnetically with the particle beam. The effectiveness of all stripline
pickups and kickers, characterized by their shunt impedance, is directly related to the
characteristic impedance, Z., of the stripline.[!! In the case of resonant stripline devices
where a high Q is desirable,-the resistance per unit length, R’, of the stripline is also an
important factor in determining the shunt impedance.

In this paper, Z. and R’ are calculated for the stripline electrode geometry shown in
Figure 1. The outer conductor of the strip transmission line consists of a circular beampipe
with inner radius a. The inner conductor consists of an infinitely thin strip concentric with
the beampipe. The inner conductor has radius of curvature b and subtends an angle ¢o
about the center of the beampipe. Plots of Z; and R’ vs b/a and ¢q for this geometry are
presented along with data from approximate formulas for large ¢¢ and b/a approaching
unity.

* This work was supported by the U. S. Department of Energy under contract DE-
ACO05-84ER40150



There are, of course, many mathematical techniques for solving this problem. Similar
problems have been treated using conformal mapping(?! and spectrai domainl® approaches.
In addition, the various Moment Method techniques may be applied.*] Here, the method
of Wangl®! which solves a dual series representation of the boundary conditions is used
because of its relative simplicity and satisfactory accuracy.

Characteristic Impedance and
Resistance per Unit Length

It is well known that transmission lines in the TEM mode support unique voltage and
current waves whose properties may be determined solely from a solution to Laplaces equa-
tion for the two dimensional cross section of the line.[S! The stripline geometry of Figure 1
is a two conductor TEM line supporting voltage and current waves with amplitudes Vo and
Iy respectively. The current, Ip, is the total current on either one of the two conductors.
The characteristic impedance, Z., is defined to be the ratio Vp/I, for the TEM wave. For
convenience, the current on the outer conductor is used so that:

Vo

Z, = —2—
§17,d

(1)

where : J_: = gurface current density on Cj.

Boundary conditions require that J.o=fix Hatr= a, where # is the unit normal

to the outer conductor C3. In addition, for TEM waves, & x F = nﬁ where & is the unit
vector in the direction of propagation and # = 120x ohms, the wave impedance of free

space. Using these relations and the fact that Fis everywhere normal to the conducting
surface Cj, the current may be written:

h:%f@w 2)

The electric field may be determined from the solution to the two dimensional static
potential problem shown in Figure 2. Here, the potential difference between the two

conductors corresponds to the amplitude of the TEM voltage wave, V. Using F = -V,
the characteristic impedance becomes:
nVo

%= FIved ®

€2

For the two conductor problem, the solutions for & and —V® will always have overall
multiplicative factors of Vg, therefore, Z, is seen to be a function only of the line geometry.

An approximate expression for the resistance per unit length, R’, of the stripline may
be obtained from power loss considerations. Assuming the beampipe and strip are good
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enough conductors so that the fields closely resemble the perfectly conducting case, the
power lost per unit length of line is:

lpp-f f E{L (4)
2 2
c1+ca
where: R’ = resistance per unit length
R, = planer surface resistance

C1, C3 = integral paths around each conductor

Using previous arguments and equation (3), the following expression for R’ is obtained:

R,Z2

Rl — it

n2Vd
c1+ea

Ve d (5)

From (5) it is noted that R’ is a function only of the stripline geometry and conductor
characteristics.

Once again, it is important to point out that expression (5) is an approximation. In
particular, two assumptions are made which may result in erroneous calculations of R’ for
certain cases of the stripline geometry. First, the fields used in the calculation are the loss
free fields. For the stripline geometry, this results in infinite current densities at the edges
of the infinitely thin center conductor. Therefore, contributions to the integral in (5) at
the strip edges may be appreciably different from the case for small losses where the fields
are high but finite. In addition, expression (5) involves the planer surface resistance, R,.
This standard approximation is excellent for the usual cases where the radii of curvature
of the surfaces involved are large compared to the skin depth. However, this is not the
case at the edges of the strip. Despite the errors resulting from the singular nature of the
strip geometry, the R’ values calculated from (5) are expected to be accurate to within
10%7]. Therefore, it is still of some utility to calculate R’ with the approximate formula
in order to gain some insight into the loss behaviour as a function of strip geometry.

It is evident from equations (3) and (5) that the parameters of interest are obtained
from the solution to the two dimensional potential problem in Figure 2. However, before
proceeding to solve this problem, it-is useful to derive appreximate expressions for Z. and
R’ which are valid for large ¢o and b/a approaching unity. Under these conditions, one
might expect the fields to be those of the standard coaxial transmission line only confined
to the region —¢y/2 < ¢ < ¢o/2 and b < r < a. In this case, neglecting fringing fields,
equation (3) yields:
ning

do (©)

This equation reduces to the well known result Z. = 60lna/b, for ¢o = 2x. For an
approximation to R/, the same assumptions are made implying that all of the surface
current on the inner conductor resides on its outer surface. In this case, equation (5) gives:

R w fT.?g (21!' + %d»o) (7)

Z, =~
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This expression also reduces to the coaxial line case for ¢o = 2.

Solutions for Z, and R’/

In order to calculate Z, and R’, the potential problem of Figure 2 must be solved.
Solutions to Laplaces equation in terms of circular harmonics may be written for the two
regions indicated in Figure 2:

‘Dl(r,¢)=ao+i anr" cosng 0<r<b (8)
n=1
@3(r,¢)=aoln—§+i an [r _(T) ] cosng b<r<a (9)

B 1-(%)2"

Expressions (8) and (9) satisfy the boundary conditions @3 (a,¢) =0, ®; (b,4) = &2 (b, é)
and @, (0,¢) finite. In addition, even symmetry about ¢ = 0 has been invoked.

In order to determine the unknown coefficients, a,, in (8) and (9), an additional mixed
boundary condition must be satisfied at r =b:

®1lr=t =Vo on D, E-%—“S'ﬁﬁ % (10}
6<I>1 3@2 ¢ ¢0
—_ = —= =—-<¢< —_
or lr=b Ir lr=b on D; 2= ¢<2m 2 (11)

Conditions (10) and (11) state that the potential is a constant equal to Vp on the inner

conductor and the normal component of E is continuous elsewhere on r = b. From (8)
and (9):

oo

%, n—

5 = ngl annr™ ! cosng (12)
-] n 4 a? "

a n=1 1- (%)

The conditions (10) and (11) may then be written:

Xo=1-)_ Xnfn ¢ € Dy (14)

n=1



b Xn
Xo=2111; Z [—ngnl fn ¢ € D2 (15)

where: X, = a,b*/Vp
fn =cosng

To solve for the unknown coefficients, X, the dual series equations, (14) and {15) are
transformed into an infinite system of linear equations by an integration method used by
Wang.[®] For notational convenience, the following definitions for weighting functions and
inner products are made:

W = cos m¢ | (16)
k(©),9001 = [ hO)o(0)a0 (17)
#0900 = [ )o@ (18)

Multiplying each side of equations (14) and (15) by W,, and taking the appropriate inner
product yields:

(Wm,Xo>1 = (Wm, 1)1 - E Xn(wma fn)l (19)
(W, Xo)2 =2’ Z: [x—"",,;] (Wen, fn)3 (20)
a n=1 {1 — (%)
Using the properties (Wi, Xo)2 = —(Wm.Xo)1:»  (WmznsJn)2 = —(Wman, fa)1

and (Wi, fm)2 = * — (W, fm)1, equations (19) and (20) can be combined to give:

= 2nln%
Z Xn(Wm,fn)l{l'i' m}
+Xm{(WM:fm)l - ﬁ%%nr] [’r - (Wm:fm)l]}

= (Wm, 11 (21)
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Equation (21) can also be written in matrix form:

[tmn] [Xn] = [Km] (22)
where: Ky = (Wn, 1) (23)
2ning
n—(Wm’ fn)l {1+m} m;én (24)
2mln%
lnm = (Wm, fm)l - ﬁ“:(—%)*i;.,T [ﬂ' - (Wm, fm)l] (25)

The necessary inner products are easily calculated from (17):

$o

(Wm, 1)1 = ; sin m — 5 (26)
AN S LR S @
Wi, fudr = 52+ -1 sinmeo (28)

Approximate values for the coefficients X, may now be obtained by truncating (22) to a
finite system of equations and finding [Imn]

To find an expression for the characteristic impedance, Z,., equation (13) for r = a is
substituted into equation (3) to give:

nlng
€ 21|'|Xo|

(29)

From (29) it is noted that the characteristic impedance of the stripline is that of a standard
coaxial line multiplied by the factor 1/|Xo|. By comparing (29) with (8), it is seen for large
¢o that | Xo| roughly represents the fraction of 2x radians subtended by the stripline center
conductor. The solution to (22) gives the coefficients, X3, X3,...X.. In order to find an
expression for Xy, equation (19), which is valid for any m is employed. For convenience,
m = 1 is used yielding:

(W 1fu)1 ‘
E o (W;lal)l (30)



Other values of m work equally well, however,m = 1 is computationally convenient because
(W1,1), is non-zero for 0 < ¢ < 2.
The resistance per unit length may be calculated from equation {5):
R,Z? 09, (2 ad
R = 8 1 2
- q2V2 { / | or r=b bdé + [ I (31)

r=b
Using (12) and (13), an expression for R’ may be found with some tedious algebra:

,=R_,Z£3 -1-00 3 nmXnXmifm, fa)1 (1+(%)2n)(1+(%)2m)
S R PP e &

S ) i B[]
nX3(3)""

a bln
+ %’r f: —,} (32)

w=i [1-(3)"]

3‘1’2

d>+

olp u-ln

Numerical Results for Z, and R’

Numerical calculations for Z. and R’ were made using 500 terms for the series expan-
sions. The results for Z. are shown in Figures 3 and 4. In Figure 3, Z, is plotted over
a wide range of center conductor angles, ¢p, for three different b/a ratios. In addition,
Figure 3 contains plots of Z. using the approximate equation (8). As expected, equation
(6) is seen to be more accurate with increasing b/a and ¢o. Figure 4 shows Z, over a
smaller range of ¢¢ for more b/a ratios.

The accuracy of the data was estimated by studying convergence as the number of
coefficients was increased from 100 to 500 in steps of 100. In all cases the data is believed
to be accurate to within 5% for ¢o > 20°. The accuracy also increases dramatically
with increasing ¢o because fringe field contributions become more negligable. The worst
accuracy is obtained for b/a > .8 and ¢¢ < 20°. In these cases, the accuracy is estimated
at 10-20%. The amaller b/a data is accurate to better than 5% for all ¢g shown. Lastly, it
is pointed out that the calculated values of Z, are always less than the true values.

Because R’ depends on specific conductor properties and dimensions, the unitless
quantity R'a/R, is plotted instead of R’ in Figures 5 and 6. In Figure 5, the approximate
values for R'a/R, from equation (7) are also shown. Again, this approximation is good for
large b/a and ¢o. In general, the R'a/R, data is not as accurate as the Z, data because
the integrations in (31) involve the edges of the inner conductor. However, it is believed
that the data is still good to 5% except for b/a > .8 and ¢¢ < 20°. It should be pointed
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out again that equation (5) itself is an approximation that may yield R’ values that are
to high by ~10%. In view of the fact that the finite number of terms in the calculation
yields R'a/R, values that are 5% lower, it is plausible that the data presented might be
only 5-10% in error from the true resistances.

Discussion

It should be noted that real pickups and kickers usually contain two or four striplines in
one beampipe, one vertical set and/or one horizontal set. However, if ¢ for the strips is rea-
sonably small, say 40° or less, one might expect the perturbation on the results presented
here to be small for the larger b/a ratios. In addition, when calculating shunt impedances
for pickups and kickers, one must include the geometric factor, g, which roughly represents
the effective fraction of the beam current intercepted by the stripline when operated as a
pickup.8] Using this approximation g is to first order, equal to | Xo{, from equation (29).
Further information on shunt impedance calculations is contained in reference ().
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Figure 1: Schematic of strip transmission line pickup.

Figure 2: Geometry for static potential problem.
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Figure 4: Z. vs ¢ for several b/a.
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Figure 6: R'a/R, vs ¢o for several b/a.



